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Abstract

This paper describes a Unified Flow Solver (UFS) for rarefied and continuum gas flows. The UFS separates the rarefied
and continuum flow domains and selects appropriate solvers to combine the efficiency of continuum models with the accu-
racy of kinetic models. The direct numerical solution of the Boltzmann transport equation is used in rarefied regions, while
kinetic schemes of continuum fluid dynamics are used elsewhere. Using similar computational techniques for the kinetic
and continuum solvers, and employing intelligent domain decomposition algorithms attain the efficiency and numerical
stability of the UFS. Solutions of test problems are presented to illustrate the capabilities of the UFS for high and low
speed flows. It is shown that the UFS can dynamically adapt the computational mesh and automatically introduce and
remove kinetic patches to provide significant savings by limiting molecular scale solutions only to the regions where they
are needed.
� 2006 Published by Elsevier Inc.
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1. Introduction

The presence of rarefied and continuum domains is a typical feature of many complex gas flows. In rarefied
domains, the mean free path of gas molecules is comparable or larger than a characteristic scale of the system.
These domains are naturally described by particle models such as the Direct Simulation Monte Carlo (DSMC)
or involve solutions of the Boltzmann kinetic equation for the velocity distribution function. The continuum
domains are best described by the fluid (Euler or Navier Stokes) equations in terms of average flow velocity,
gas density and temperature. The development of hybrid solvers combining kinetic and fluid models has been
an important area of research over the last decade (see Refs. [1,2] for reviews). Potential applications of such
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solvers range from high altitude flights to gas flows in micro systems. The key parameter defining the choice of
the appropriate physical model is the local Knudsen number, Kn, defined as the ratio of the mean free path to
the characteristic size of the system. For high altitude flights, it is the low gas density, for gas flows in micro
systems, it is a small dimension of the system that dictates the choice of a kinetic model.

Key challenges in the development of hybrid codes are the identification of kinetic /continuum domains, the
choice of a coupling method and imposition of boundary conditions at interfaces. Different methods explored to
date can be classified into three categories. The first category includes methods employing domain decomposi-
tion in physical space. In this category, the computational domain is decomposed into kinetic and continuum
sub-domains using appropriate criteria [3–12]. The second category includes methods based on domain decom-
position in velocity space where fast and slow particles are treated separately [13]. The third category includes
hybrid models. With these methods, one solves both kinetic and fluid equations in the entire domain and uses the
Velocity Distribution Function (VDF) to compute transport coefficients for the fluid equations [14,15].

Most of the published works fall into the first category. Typically, particle methods such as DSMC or Molec-
ular Dynamics are used in regions with strong deviations from equilibrium, and a fluid (Euler or NS) solver is
used in other regions. An adaptive mesh and algorithm refinement (AMAR) procedure has been developed for
a DSMC-based particle method to supplement the grid refinement by algorithm refinement (continuum vs
atomistic) based on continuum breakdown criteria [16]. However, statistical noise inherent to DSMC has been
identified as an obstacle for the development of hybrid solvers [17,18]. Due to strong fluctuations of the macro-
parameters calculated from the DSMC, the problem of connecting kinetic and continuum regions is compli-
cated by severe stability problems when DSMC data is handed over to a continuum solver at the interface.
The uniqueness of our approach consists of combining direct numerical solution (DNS) of the BTE with kinetic
schemes of gas dynamics in a hybrid code with solution adaptive domain decomposition [19]. The DNS has
recently emerged as a viable alternative to DSMC [20,21] and is preferable to DSMC for coupling kinetic
and continuum models because similar numerical techniques are used for solving both the Boltzmann and con-
tinuum equations. The recent efforts to combine DNS with a NS solver [22] used a priory decomposition of the
domain, rather than solution adaptive dynamic domain decomposition employed in our work.

The key components of the UFS are shown in Fig. 1. The main component is a Boltzmann solver imple-
mented with the DNS method for the UFS described in this paper. Another component is a Computational
Fluid Dynamics (CFD) solver. It is preferable to implement such a solver using numerical algorithms similar
to the Boltzmann solver. From this point of view, recently introduced kinetic schemes of gas dynamics are very
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attractive [23,24]. The remaining components of the UFS contain criteria for domain decomposition into
kinetic and continuum parts and coupling algorithms.

The open source Gerris Flow Solver (GFS) [25] is used as a framework for the UFS. The original Gerris
code contained an incompressible flow solver with a binary tree-based dynamically adaptive grid and support
of complex boundaries. The code can automatically generate Cartesian mesh around embedded objects
defined through standard files. Using the GFS framework, we have added a Boltzmann solver for one com-
ponent monatomic gases, compressible Euler and NS solvers based on kinetic scheme, and developed practical
criteria for domain decomposition and coupling kinetic and CFD solvers. The UFS can perform dynamic
adaptation of the mesh for the solution and geometry, identify kinetic and continuum domains and select
appropriate solvers based on continuum breakdown criteria.

The structure of the paper is as follows. Section 2 describes DNS methods for the Boltzmann equation and
presents examples of rarefied flow simulations using the Boltzmann solver. Section 3 describes kinetic schemes
for the Euler and NS equations. Section 4 is devoted to continuum breakdown criteria, domain decomposition
into kinetic and continuum patches and coupling kinetic and continuum solvers. Section 5 illustrates current
capabilities of the UFS.

2. Numerical solution of the Boltzmann equation

The Boltzmann Transport Equation (BTE) describes the evolution of a particle distribution function, f, in a
six-dimensional phase space [26]
of
ot
þrr � ðnf Þ ¼ Iðf ; f Þ: ð1Þ
Here r is a position vector in physical space, n is the velocity vector and t is time. The right-hand side of Eq. (1)
contains an integral operator describing binary collisions among particles. For elastic collisions in a mon-
atomic gas, it has the following form:
IðnÞ ¼
Z

S2

dx

Z
R3

ðf ðn01Þf ðn
0Þ � f ðn1Þf ðnÞÞgrðg; vÞdn1 ¼ �mðnÞf þ U: ð2Þ
Here m is the collision frequency, U is the inverse collision integral, g = jn1 � nj is the relative velocity of the
colliding particles, x is a vector on a unit sphere S2 in velocity space and dx is an element of the area of the
surface of this sphere, r(g,v) is the differential collision cross section, v is the scattering angle and
dn = dnxdnydnz. The post-collision velocities ðn0; n01Þ and the pre-collision velocities (n,n1) satisfy the momen-
tum and energy conservation laws
nþ n1 ¼ n0 þ n01;

jnj2 þ jn1j
2 ¼ jn0j2 þ jn01j

2
:

ð3Þ
The integral (2) can also be written in the form
IðnÞ ¼
Z 2p

0

de
Z bm

0

db
Z

R3

ðf ðn01Þf ðn
0Þ � f ðn1Þf ðnÞÞgbdn1; ð4Þ
where b is the impact parameter (defined as the distance of the closest approach of the trajectories) usually
bounded by a certain value bm, and e is the azimuth impact angle. The scattering angle v(g,b) depends on
the scattering potential of inter-atomic interactions. For the Hard Sphere (HS) molecules of diameter d, the
scattering is isotropic and b = d sinh where h = (p � v)/2. For the Variable Hard Sphere (VHS) models fre-
quently used in DSMC simulations, the scattering is also isotropic and gr = Ckg1�4/k, where k is the exponent
in the intermolecular potential. For other commonly used scattering potentials, these relationships can be
found in [27]. We have implemented the following scattering models: the HS model, the inverse power repul-
sive potentials, the Lennard-Jones potential and the Coulomb potential.

For the numerical solution of Eq. (1), a Cartesian mesh in velocity space is introduced with a cell size Dn

and nodes ni. Using this mesh, Eq. (1) is reduced to a system of linear hyperbolic transport equations in phys-
ical space with a nonlinear source term
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ot
þrr � ðnifiÞ ¼ Iðfi; fiÞ: ð5Þ
Introducing a computational grid in physical space, we split the solution of (5) into two stages: collisionless
flow and relaxation. For the collisionless flow, we use an explicit finite volume numerical scheme (index j de-
notes cell number in physical space)
V
f �kij � f k�1

ij

Dt
þ
X
face

ðni � nÞfacef
k�1
i;faceSface ¼ 0: ð6Þ
Here k is the time index, * denotes the intermediate time level, f k�1
i;face is the value of the function on the cell face,

n is the unit outward normal vector to the face, V is the cell volume and Sface is the face surface area. For
calculation of the face values of the distribution function, we use standard interpolation schemes of the first
and second order. The second-order scheme has three options: (i) no limiter, (ii) the minmod limiter and (iii)
van Leer limiter. A binary tree-based dynamically adaptive isotropic Cartesian grid with a local mesh size h is
automatically generated in a computational domain using the GFS engine [25].

The relaxation stage has the form
f k
ij � f �kij

Dt
¼ �m�kij f �kij þ U�kij : ð7Þ
Currently, we use an explicit scheme with automatic selection of the time step. The time step is selected as
Dt = min(Dtadv,Dtcol) where Dtadv = h/jnmaxj and Dtcol = 1/mmax. Here jnmaxj is the absolute value of the
maximum particle velocity, mmax is the maximum value of the collision frequency. For instance, in a Knud-
sen layer (the area of large spatial gradients and highly non-equilibrium velocity distribution function), the
spatial size of the local cell should be smaller than the local mean free path. Additional decrease of the
time step is dictated by the value of mmax. Since the collision integral is calculated using a quasi-statistical
procedure (see below), some oscillations of the collision frequency m(n) can appear on periphery of the
velocity space. This results in an additional increase of the collision frequency mmax and a considerable
decrease of the time step. This additional limitation on the time step for Eq. (7) allows one to use the
splitting method even for small Kn numbers. For transient problems, the time step must be selected using
the minimal time step for the entire computational domain. It should be noted that with conservatively
calculated collision integrals, it is possible to use computational schemes without splitting into collisionless
flow and relaxation.

The boundary conditions at the surface of solid objects define the distribution function of the reflected par-
ticles as a sum of diffuse and specular reflections with an accommodation coefficient a
f ðnÞ ¼ afMðnÞ þ ð1� aÞfrðnÞ: ð8Þ

The specular reflection term is fr = f(nr), where nr is the velocity of an incoming molecule towards the bound-
ary, which after specular reflection transforms into nr = n � 2(n Æ n)n where n is a unit vector normal to the
boundary. The diffuse reflection term contains the Maxwellian distribution fM(n) with a zero mean velocity,
depending on the temperature of the boundary, Tw and the gas density nw calculated to ensure zero particle
flux at the boundary at a given point. At the boundaries of computational domain, for many problems, the
distribution function can be assumed as Maxwellian fM(n) with a mean velocity U for (n Æ n) > 0. For parts
of the boundary with (n Æ n) < 0, the distribution function is found from the solution.

The computational domain in velocity space is selected in such a way that the values of the distribution
function outside of the domain are negligible. For two-dimensional problems (in physical space), one half
of the velocity space (nz > 0) can be used.

2.1. Calculation of the collision integral

The main problem in solving the Boltzmann equation consists in evaluating the collision integral [28]. The
calculation of the five-fold integrals (2) or (4) represents a challenge with respect to efficiency and precision.
We used the discrete analog of the collision integral having the following properties:
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(i) The integral is equal to zero for a Maxwellian distribution, I(fM, fM) = 0.
(ii) The distribution remains positive for all nodes in velocity space, when the relaxation problem (7) is

solved.
(iii) For the collision invariants, w(n) = (1,n,n2), the conservation laws should be satisfied
Fig. 2.
accoun
Z
R3

wIðf ; f Þdn ¼ 0: ð9Þ
Below, we briefly review different methods of calculating the collision integral and describe the methods used
in the present paper. For brevity, we omit the second (spatial) index of f in this section.

2.1.1. The NtN method
The first type of methods can be called Node to Node (NtN). This method has been used by Goldstein et al.

[29], Buet [30], Rogier and Schneider [31], Tan and Varghese [32] and Frolova and co-workers [2]. To illustrate
the essence of the method, Fig. 2 shows a collision sphere in velocity space. This sphere with center
n0 = (ni + nj)/2 and radius jgj/2 is wrapped around pre- and post collision velocities (see Eqs. (3)). The
NtN method takes into account only those post-collisional velocities that fall exactly into the nodes of the
velocity grid. Therefore all properties (i–iii) are satisfied automatically.

For the numerical calculation by the NtN method, the integral (2) can be written in a symmetric form
[32]
IðfÞ ¼ 1

2

Z
S2

dx

Z
R3

Z
R3

ðdðn01 � fÞ þ dðn0 � fÞ � dðn1 � fÞ � dðn� fÞÞf ðnÞf ðn1Þgrðg;xÞdndn1; ð10Þ
where d(n) denotes the delta-function. This representation is better for the numerical evaluation because direct
and inverse collisions are treated symmetrically and microscopic reversibility is satisfied. For the numerical
evaluation, the 8-fold integral (10) is written in the form [32]
IðfÞ ¼ ðDnÞ6

2

XN

i

XN

j

fifj

Z
S2

dx½Di þ Dj�gijrijðxÞ; ð11Þ
where Di ¼ dðn0i � fÞ � dðni � fÞ, Dj ¼ dðn0j � fÞ � dðnj � fÞ and N is the total number of nodes in velocity
space.
i

j

x

yξ

ξ

ξ

ξ

Collision sphere in the (nx,ny) plane. ni and nj are pre-collision velocity nodes. Points denote post-collision velocity nodes taken into
t in the NtN method.
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To evaluate the integral over the unit sphere in (11) ensuring the exact energy conservation, the NtN
method takes into account only those post-collisional velocity nodes that lie on the collisional sphere (see
Fig. 2)
Z

S2

dx½Di þ Dj�rijðxÞ ¼
XMij

l

wijl½Di þ Dj�; ð12Þ
where Mij is the total number of such nodes (for each pair of pre-collisional nodes i and j) and wijl are their
weights. For the VHS-like models with isotropic scattering, the number and position of nodes on the colli-
sional sphere can be determined a priory and the calculation of weights is simple, wijl � 1/Mij. For more gen-
eral potentials, the angle between direct and inverse collisions is a function of relative velocity and these
calculations become cumbersome.

The NtN method is conservative and requires no interpolation of the velocity distribution function. For
good accuracy, a rather dense mesh in velocity space has to be used. If all velocity nodes are used, the method
is deterministic. The evaluation of integral in this case requires O(N2) operations. To reduce the number of
operations it is possible to select collision events using Monte Carlo method [32], or use Korobov sequences
(see below). The disadvantages of the method are (i) only a small number of post-collision velocities distrib-
uted over collisional spheres fall exactly into the velocity grid and (ii) the method is applicable only for
VHS-like models with isotropic scattering. The NtN method cannot be extended for general models of inter-
molecular interactions and for non-uniform grid in velocity space because only selected post-collisional veloc-
ities are used. Also, extensions to gas mixtures with arbitrary molecular mass ratios are difficult.

2.1.2. Tcheremissine’s method

To generalize the NtN method for more complex models of molecular collisions it is necessary to take into
account inverse collisions that do not fall exactly into the nodes of the velocity grid. Depending on how the
post collision velocities are taken into account it is possible to obtain different schemes for calculation of the
integral. In a series of works (see [21,27,33] and references therein) Tcheremissine developed conservative
methods of calculating collision integral for arbitrary interaction potentials, by dividing contributions of post
collision points into two parts and accounting them in the two closest nodes (see Fig. 3). This method allows
one to satisfy conservation laws (3) in each collision. The method is briefly described below.
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Fig. 3. Selection of post-collision nodes for Tcheremissine’s method.
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For arbitrary potential on intermolecular interactions, it is more convenient to perform integration over
collision impact parameters (4) instead of integration over a unit sphere (2). The corresponding integral in
the symmetric form with respect to direct and inverse collisions is
IðfÞ ¼ 1

4

Z 2p

0

de
Z bm

0

db
Z

R3

Z
R3

½dðn� fÞ þ dðn1 � fÞ � dðn0 � fÞ � dðn01 � fÞ�Xðn; n1Þbg dn1 dn; ð13Þ
where Xðn; n1Þ ¼ f ðn0Þf ðn01Þ � f ðnÞf ðn1Þ. On the discrete velocity grid, the velocities before collision (ni,nj) are
selected at integer nodes i, j of the grid and the post collision velocities (na,nb) do not necessarily fall into the
nodes. To obtain the mass, impulse and energy conservation in each collision and satisfy the condition
w(ni) + w(nj) = w(na) + w(nb), the value of w(na) + w(nb) is interpolated to the nearest integer nodes nk, nm

using the following interpolation:
wðnaÞ þ wðnbÞ ¼ ð1� rÞðwðnmÞ þ wðnm1ÞÞ þ rðwðnkÞ þ wðnk1ÞÞ; ð14Þ
where the nodes nk1, nm1 are selected symmetrically with respect to the nodes nk, nm (see Fig. 3). On a uniform
grid, it is possible to perform this interpolation with one coefficient for five scalar invariant functions of vector
w, since conservation of mass and impulse in this case is satisfied automatically due to the symmetric position
of the nodes. The coefficient r is found from the equation
n2
a þ n2

b ¼ ð1� rÞðn2
m þ n2

m1Þ þ rðn2
k þ n2

k1Þ: ð15Þ
The weight coefficients r and 1 � r define the parts of the contribution X(na,nb) = f(nj)f(nj) � f(na)f(nb) to the
closest integer nodes nk, nk1, nm, nm1, X(nm,nm1) = (1 � r)X(na,nb), X(nk,nk1) = rX(na,nb) (see Fig. 3). The cal-
culation of the scattering angle h(g,b) as function of collision parameters for complicated molecular potentials
is described in [27,33]. An interpolation of the VDF for calculation of f ðn0Þf ðn01Þ is required but it can be per-
formed using any interpolation formula and does not influence the conservation laws.

2.1.3. The NtCN method

Finally, we describe a method that can be used for arbitrary interaction potentials and non-uniform grid in
velocity space. We start from the same symmetric form of the collision integral as in Tcheremissine’s method.

The procedure of calculating collision integral consists of the following steps (see Fig. 4):

(i) select pre-collision velocities ni, nj for impact parameters b, e,
(ii) determine post-collision velocities nl, nk,

(iii) find nodes nm, nk closest to the nodes nl, nk,
(iv) calculate an inverse collision with velocities nm, nk for the same impact parameters b, e,
(v) calculate velocities after this inverse collision na,nb,

(vi) calculate contributions to the integral from direct X(ni,nj)gijb and inverse X(nm,nk)gmkb collisions, where
the quantities fafb, fkfl are found using a logarithmic interpolation to give zero integral for Maxwellian
distribution,

(vii) sum up contributions to the collision integral �m(ni)f(ni) + U(ni).

This procedure of evaluating collision integral uses closest nodes (NtCN) to account inverse collisions and
introduces errors of the order of O(Dn)jf � fMj in conservation of mass, momentum and energy. In order to
eliminate these errors, we introduce a correction to the collision frequency using the method of least squares
m�ðnÞ ¼ ð1þ a0 þ a1nx þ a2ny þ a3nz þ a4ðn2
x þ n2

y þ n2
z ÞÞmðnÞ; ð16Þ
where the coefficients ai (i = 0, . . . , 4) are defined from the conservation laws (9),
P

i½�m�ðniÞf ðniÞþ
UðniÞ�wðniÞDn ¼ 0. Thus, this method of calculating the Boltzmann collision integral possesses all the proper-
ties (i–iii).

All three methods described above involve calculations of eight-dimensional integrals (11) or (13). For these
calculations, the method of Korobov sequences [34] is applied. In the general case, Korobov’s points inside an
s-dimensional hypercube are defined as
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xrj ¼ fjapj
r =pg; r ¼ 1; 2; . . . ; s; j ¼ 1; 2; . . . ; p � 1; ð17Þ
where p is a prime number, apj
r are pre-calculated integer coefficients, and the brace denotes the reminder on

dividing an integer by an integer. The velocity grid points closest to the selected Korobov’s points are taken as
the velocity grid points. The accuracy of this procedure is estimated as Oððln NcÞas

=N a
cÞ, where Nc is the num-

ber of quasi-random trials, and the exponent a P 1 depends on the smoothness of the integrated function (for
a piecewise-constant function, a = 1). The above error is less than estimated error of OðN 1=2

c Þ for Monte Carlo
methods of calculating multi-dimensional integrals.

The typical value of Nc in our simulations was equal to 34,000. We have accounted only for those collisions
inside a sphere (with the center and radius defined by the characteristic parameters of the problem), for which
inverse collisions also fall inside this sphere. Depending on the value of Nc, and the number of cells in velocity
space, different Korobov’s sequences were selected [34].

The calculations of the collision integral by the three methods described above satisfy the conservativity
condition at the kinetic level [20]. Using any of them makes it possible to solve the BTE without splitting into
collisionless flow and relaxation stages and use any other scheme of calculating a hyperbolic system with a
source term. It is worth noting that the search for the best methods of calculating the Boltzmann collision inte-
gral continues. Many attempts have been explored [35], among them are the polar discretization of the velocity
space [36], smoothing of the collision spheres [37] and smoothing the collision integral [38] in order to incor-
porate more points of the discrete velocity grid.

2.2. Shock structure calculations using the Boltzmann solver

In this Section, we illustrate application of the Boltzmann solver described above to simulation of the shock
wave structure. The problem of shock wave structure is ideal for testing the quality of the numerical BTE solu-
tion, in particular, the accuracy of the nonlinear collision term. Shock wave describes collisional mixing of two
equilibrium distributions with very different temperatures and mean velocities over a short distance of the
order of several mean free paths. We have performed simulation of the shock wave structure for different
Mach numbers and different models of intermolecular interactions and compared our results with the bench-
mark solutions, previous DSMC results and experimental data.

In our calculations, velocities are normalized to the thermal velocity vth = (2kT/m)1/2. The kinetic spatial
scale is defined by the mean free path k, which depends on the molecular interaction law, gas number density
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n and temperature (for the HS model k ¼
ffiffiffi
2
p

pd2n
� ��1

, where d is the diameter of molecules). The local Knud-
sen number is defined as Kn = k/L, where L is a characteristic spatial dimension of the system. The Knudsen
number for the free-stream conditions is denoted as Kn1 = k1/L, where k1 is the mean free path for the free-
stream with density n1 and temperature T1.

For a classical problem of the shock structure in a one-component monatomic gas, the VDFs upstream and
downstream of the shock are defined as two Maxwellians with densities, temperatures and mean velocities
given by the Rankine–Hugoniot relations. The computational domain in velocity space is selected as follows.
The upper bound of the nx velocity component, nþx , is equal to the maximum of two quantities, u1 þ 3

ffiffiffiffiffi
T 1

p
and

u2 þ 3
ffiffiffiffiffi
T 2

p
, where indexes 1 and 2 denote upstream and downstream values, correspondingly. The lower

bound of the nx velocity component, n�x , is defined as u2 � 3
ffiffiffiffiffi
T 2

p
. The ny and nz velocity bounds are from

�3
ffiffiffiffiffi
T 2

p
to 3

ffiffiffiffiffi
T 2

p
. The velocity cell size is usually chosen as Dn ¼

ffiffiffiffiffi
T 1

p
=2. We assume n1 = 1, T1 = 1,

u1 ¼ M
ffiffiffiffiffiffiffiffi
5=6

p
, where M is the Mach number.

The comparison with the benchmark results obtained by the conservation splitting method [39] and by the
Ohwada’s method [40] demonstrated agreement for gas density and temperature with an accuracy of 1% for
the HS model. Fig. 5 compares calculated longitudinal and transversal temperatures inside a shock wave for
different models of inter molecular interactions. The temperatures Ti and T^ are defined as
Fig. 5.
interac
Symbo
T k ¼
R
ðnx � uÞ2f dnR

f dn
; T? ¼

R
ððny � vÞ2 þ ðnz � wÞ2Þf dnR

f dn
ð18Þ
and normalized to the downstream temperature T2. Comparison of DNS and DSMC results [41] for Maxwell
molecules demonstrates good agreement even for relatively coarse velocity grid in the Boltzman solver
(24, 24,12). The HS model yields shock thickness too small since the hard spheres are the most efficient
scatterers.

Fig. 6 compares our computations with experiments for density and temperature profiles in the shock wave
in rare gases for two different Mach numbers. The density profile in Argon for M = 3.8 is compared with an
experiment by Alsmeyer [42]. The temperature profile in Helium for M = 1.59 is compared to the experiment
[43]. The computations were performed for the Lennard-Jones interaction potential. The agreement of exper-
imental and calculated profiles indicates the high accuracy of the Boltzmann solver.

Concluding this section, we should note that our goal here was not to study thoroughly the shock structure
but only to validate the Boltzmann solver by comparison with benchmark solutions for simple models (such as
the HS model), demonstrate that the method describes correctly non-equilibrium properties of the flow (such
as longitudinal and transverse temperature, heat flux distributions, etc.), show that the method properly reacts
on changing molecular interaction potential, and that it is capable of describing experimental data for the
shock wave structure at different Mach numbers.
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3. Kinetic schemes for continuum equations

Traditional numerical schemes of Computational Fluid Dynamics (CFD) are based on discretization of the
fluid (Euler or NS) equations. Kinetic schemes differ from the traditional CFD schemes – they use the BTE for
building numerical algorithms (see [44]). Kinetic schemes for the Euler equations were proposed in [45,46], and
independently in [47,48]. The main idea of this approach was suggested earlier, in [49]. Kinetic schemes using
moments of the equilibrium VDF were used by Deshpande with co-workers [50], and further developed and
improved in [51,23,52,53]. We have used kinetic CFD scheme to facilitate coupling to the Boltzmann solver.
Our implementation of the kinetic scheme for Euler and NS equations is described below.

3.1. Kinetic Euler solver

Our kinetic Euler scheme follows the equilibrium flux method by Pullin [45]. The main idea of this method
is illustrated below. Consider Euler equations for monatomic gas in the form
oY

ot
þ oF

ox
þ oG

oy
þ oH

oz
¼ 0; ð19Þ
where
Y ¼ fq; qu; qv; qw;Eg;
F ¼ fqu; p=2þ qu2; qvu; quw; uðE þ pÞg;
G ¼ fqv; quv; p=2þ qv2; qvw; vðE þ pÞg;
H ¼ fqw; quw; qvw; p=2þ qw2;wðE þ pÞg:

ð20Þ
Here q = mn is the gas density, u,v and w are the mean gas velocities along the x, y and z axes, correspond-
ingly, E = 3/2q T + q(u2 + v2 + w2) is energy, T is temperature and p = nkT is gas pressure (in the considered
case of monatomic perfect gas the ratio of the specific heats c = 5/3).

The discretization of Eqs. (19) and (20) using the finite volume technique gives
Ynþ1
ijk � Yn

ijk

Dt
¼ �

Fn
iþ1=2;j;k � Fn

i�1=2;j;k

Dx
þ

Gn
i;jþ1=2;k �Gn

i;j�1=2;k

Dy
þ

Hn
i;j;kþ1=2 �Hn

i;j;k�1=2

Dz

� �
; ð21Þ
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where Yn
ijk is the cell averaged value of Y at a time tn, Fn

iþ1=2;j;k, Gn
i;jþ1=2;k and Hn

i;j;kþ1=2 are fluxes on cell faces
along x, y and z, correspondingly. To obtain these fluxes, we calculate the integrals over the velocity distribu-
tion function, for instance
Fiþ1=2;j;k ¼
1

Dt

Z tnþ1

tn

Z
R3

wnxf ðxiþ1=2; t; nÞdndt; ð22Þ
where w denotes the collision invariants (9). The fluxes Gn
i;jþ1=2;k and Hn

i;j;kþ1=2 are calculated in a similar way.
The required VDF at cell faces is taken in the form
f ðxiþ1=2; yj; zk; t; nÞ ¼ H ½nx�f l
M þ ð1� H ½nx�Þf r

M; ð23Þ
where f l
M and f r

M are Maxwellian distributions at the left and the right side of the face
f r
M ¼

qiþ1=2

pT n
iþ1=2

� �3=2
exp �

ðnx � uiþ1=2;j;kÞ2 þ ðny � viþ1=2;j;kÞ2 þ ðnz � wiþ1=2;j;kÞ2

T n
iþ1=2

" #
ð24Þ
and H[n] is the step function
H ½n� ¼
1; n > 0

0; n < 0

	 

:

For the first order scheme, the values of macro-parameters at faces qiþ1=2;j;k; uiþ1=2;j;k; viþ1=2;j;k; wiþ1=2;j;k;
T iþ1=2;j;k are calculated for the functions f l

M and f r
M, using the known values of the macro-parameters in cells

xij(xi+1,j). For the second order scheme, the calculation of these macro-parameters is performed using standard
methods of reconstruction using the values at xi�1,jxij,xi+1,j(xi,jxi+1,j, xi+2,j) cells and corresponding limiters.

We illustrate the kinetic Euler scheme for a 2D transient simulation of an internal gas flow in a channel with
a forward-facing step at M = 3. The first and second order numerical schemes have been used with mesh
refinement based on density gradient. The second-order scheme employs the minmod limiter or Van Leer lim-
iter. Fig. 7 shows simulation results with a sensitivity parameter for mesh refinement equal to 0.025. The
results are close to those of Ref. [54].
Fig. 7. Computational mesh (top) and gas density contours (bottom) at time t = 4.
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3.2. Kinetic NS solver

Minimizing the size of the kinetic domain where the Boltzmann equation is solved can increase the effi-
ciency of computations. Using the NS solver instead of the Euler solver can expand the size of the continuum
domain. The numerical scheme, which we use for the kinetic NS solver, was developed by Xu et al. and
described in detail in several publications [23,55,56]. Here, we will only briefly outline the main features of this
scheme.

The development of the kinetic NS solver is based on the solution of the BGK equation
of
ot
þrr � ðnf Þ ¼ fM � f

s
; ð25Þ
where s = l/p is the inter-collision time expressed though gas viscosity l and pressure p, and fM denotes a
Maxwellian distribution. For the numerical solution of multi-dimensional problems we use directional split-
ting method to reduce the multi-dimensional equations to a set of one-dimensional equations. The gas kinetic
BGK scheme is obtained by solving the BGK equation analytically. For a one-dimension case, the analytical
solution has the form (the y and z dependencies are omitted)
f ðx; n; tÞ ¼ 1

s

Z t

0

fMðx1; n; t1Þe�ðt�t1Þ=s dt1 þ e�t=sf0ðx� nxt; n; 0Þ; ð26Þ
where x1 = x � u(t � t1) denotes the trajectory of the particles. Considering the solution at the discrete grid
with the cells (xi�1/2,xi+1/2) the distribution function at an initial moment f0 = f(x,n, t = 0) and a Maxwellian
distribution fM(x,n, t) around the cell faces can be constructed as
f0 ¼ f l
M½1þ alx� sðalnx þ AlÞ�ð1� H ½x�Þ þ f r

M½1þ arx� sðarnx þ ArÞ�H ½x�;
fMðx; tÞ ¼ fM0½1þ ð1� H ½x�Þ�alxþ H ½x��arxþ At�:

ð27Þ
where fM0 = fM(x,n, t = 0) is defined below (see Eq. (31)). This approximation is consistent with the first order
Chapman–Enskog expansion and allows one to account for a nonequilibrium VDF [56].

The values al,r, �al;r, Al,r and A are polynomial functions in velocity space with coefficients depending on gra-
dients of the conservative variables Y
al;r ¼ al;r
1 þ al;r

2 nx þ al;r
3 ny þ al;r

4 nz þ al;r
5 ðn2

x þ n2
y þ n2

z Þ;
�al;r ¼ �al;r

1 þ �al;r
2 nx þ �al;r

3 ny þ �al;r
4 nz þ �al;r

5 ðn
2
x þ n2

y þ n2
z Þ;

Al;r ¼ Al;r
1 þ Al;r

2 nx þ Al;r
3 ny þ Al;r

4 nz þ Al;r
5 ðn

2
x þ n2

y þ n2
z Þ;

A ¼ A1 þ A2nx þ A3ny þ A4nz þ A5ðn2
x þ n2

y þ n2
z Þ:

ð28Þ
The parameters of the Maxwellian distribution f l;r
M are defined using the values of Y at xi+1/2, and the coeffi-

cients al,r are defined using the conservative variables, for example for al
Z
R3

alf l
Mwdn ¼ ðYlðxiþ1=2Þ � YlðxiÞÞ=ðxiþ1=2 � xlÞ: ð29Þ
The coefficients Al,r are calculated to satisfy conservation laws
Z
R3

f l;r
M ðal;rnx þ Al;rÞwdn: ð30Þ
The parameters Y0 of the Maxwellian distribution fM0 are calculated from the relation
Z
R3

fM0wdn ¼
Z

nx>0

f l
Mwdnþ

Z
nx<0

f r
Mwdn ð31Þ
and the coefficients �al;r are calculated using the corresponding differences (Y0 � Y(xi))/(xi+1/2 � xi), (Y0 �
Y(xi+1))/(xi+1/2 � xi+1).
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For calculation of function A, the condition suggested in [55] is used
o

ot

Z
R3

½fMðxiþ1=2; tÞ � f ðxiþ1=2; tÞ�wdnjt¼0 ¼ 0: ð32Þ
Having obtained the VDF on cell faces, the particle fluxes on faces are calculated by integration of the VDF
with the collision invariants according to Eq. (22). This scheme incorporates the non-equilibrium character of
the VDF by additional function sfM(aln + Al) and approximates the NS equations if s(aln + Al)� 1.

The time step for Euler and NS solvers is calculated from the condition Dt ¼ CFL � h=max Uþjð
3
ffiffiffiffi
T
p
j; U � 3

ffiffiffiffi
T
p�� ��Þ. The value of max U þ 3

ffiffiffiffi
T
p�� ��; U � 3

ffiffiffiffi
T
p�� ��� �

corresponds to the value of jnmaxj for the
Boltzmann solver. When the local time step is used, the values of U and T are selected locally based on the
flow properties at the previous time step. The CFL number is set to 0.5 in most cases. When coupling contin-
uum and kinetic solutions, the time steps in mixed cells at the interface between the kinetic and continuum
domains must be as close as possible; this can be achieved by varying the local CFL number.

3.2.1. Prandtl number correction

It is well known that the BGK model results in an incorrect Prandtl number, Pr = 1. To introduce Pr num-
ber correction, we calculate the heat flux Q on cell faces using polynomial interpolation of the VDF and then
modify the value of the energy flux at faces by adding the (Pr�1 � 1)Q correction. This algorithm of Pr cor-
rection was tested for the shock wave structure for different Mach numbers (M = 1.5,3,5,10) and for different
temperature dependence of the viscosity coefficient. The results of the calculations were compared with the
benchmark calculations for the classical NS solver [23]. Fig. 8 shows results for M = 5 and Pr = 2/3. The
results of classical NS solver and kinetic NS solver coincide with each other with high accuracy for all Mach
numbers. Similar results were reported in [56] for M = 10 and different Pr numbers.

4. Domain decomposition and coupling algorithm

The main problem of unified methods is how to separate kinetic and continuum regions. Different contin-
uum breakdown criteria are discussed in [10,57]. In our hybrid solver the adequate switching criterion is impor-
tant because the wrong domain decomposition could lead to a non-positive distribution function when the NS
solution is coupled with the Boltzmann solution. In the present paper, we used the following switching criteria:
Sq ¼ Kn
1

q
jrqj; ð33Þ

SNS ¼ Kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp
p

� �2

þ 1

U 2

ou
ox

� �2

þ ov
oy

� �2

þ ow
oz

� �2
" #vuut ; ð34Þ
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where all values are given in dimensionless form, and Kn denotes the local Knudsen number. For gas flow
around a cylinder of radius R, Kn = k/R, where k is the local mean free path. The first breakdown parameter,
Sq, based on the density gradient was used by Roveda et al. [58] among others.

If S is greater than some threshold value, then the kinetic solver is used. The applicability of different cri-
teria and the ways to choose the threshold value depend on the type of problem being studied. We have found
that for supersonic external flows the criterion (34) correctly gives the non-equilibrium domain near the shock
wave and behind solid bodies at moderate Knudsen numbers. At small Knudsen numbers (Kn� 1) non-equi-
librium domain behind the bodies appears to be too small. The criterion (34) gives extended kinetic regions in
the low-speed regions behind the bodies and enables successful coupling of the NS and Boltzmann solvers. It
should be noted that the breakdown criteria derived from continuum solutions might not be appropriate for
all cases, and more computationally expensive breakdown criteria derived from the kinetic solvers might be
necessary for some problems [2,57,9].

4.1. Coupling kinetic and continuum solvers

Coupling of Boltzmann and Euler solvers consists of the following. The boundary conditions for the Euler
equations are determined from the moments of the VDF in the two neighboring cells. From the known VDF,
parameters of the corresponding Maxwellian distribution are defined. The boundary conditions for the Boltz-
mann equation are obtained assuming Maxwellian VDF in the continuum cells.

The coupling of the Boltzmann and NS solvers consists of the following. On each time step, a continuum
cell is considered, which is a neighbor to a kinetic (Boltzmann) cell. In this continuum cell, a velocity grid is
introduced which is identical to that in the kinetic cell. On this velocity grid, the following distributions func-
tions are constructed f0 ¼ f l

M½1� sðalnn þ AlÞ� on each face where nn is the normal velocity to the cell face. The
parameters of the Maxwellian distribution function gl are calculated using the macroparameters in the contin-
uum cell and the coefficients of the polynomial al are calculated using the gradients of the macroparameters in
the continuum and the neighboring kinetic cells. The coefficients of the polynomial Al are then calculated using
the relationship of conservation

R
f l

Mðalnn þ AlÞwa dn ¼ 0 of the moments on the discreet velocity grid.
The key to the hybrid computations is consistency in connecting kinetic and gas-dynamic solutions. The NS

equations solved by CFD should be consistent with the kinetic equation solved in nonequilibrium regions. The
gas kinetic CFD scheme is based on the BGK kinetic equation, taking into account different models of molec-
ular collisions by relating the collision frequency to viscosity and Pr number correction. However, when the
CFD solution is employed as the boundary condition for the kinetic solution, the distribution function con-
sistent with the Boltzmann kinetic equation must be used. It is theoretically consistent to specify this distribu-
tion function in the Chapman–Enskog form
f ðCÞ ¼ fMðCÞ 1þ qiCi
2

5
C2 � 1

� �
þ sijCiCj

� �
¼ fMðCÞCðCÞ; ð35Þ
where C = (n � U)/vth, qi ¼ �
v

pvth

2m
kT

� �1=2
oT
oxi

is the dimensionless heat flux vector and sij ¼ �
l
p

oui

oxj
þ ouj

oxi
�

�
2

3
dij

ouk

oxk

�
is the dimensionless shear stress tensor. The transport coefficients (viscosity l and thermal conduc-

tivity v) depend on specific models of molecular interactions. The Chapman–Enskog parameter C is a good
predictor of non-equilibrium conditions [57]. When C is sufficiently far from unity, the NS equations are ex-
pected to fail and the kinetic solver must be used.

In our work we used the VDF (27) as a boundary condition for the Boltzmann solver. To verify the validity
of such an approach, test simulations for both VDF (27) and (35) were performed for a shock wave. Fig. 9
shows spatial distributions of macroparameters for M = 5 obtained by the two methods and demonstrates
the validity of using the VDF (27) in this particular case. The reason for the close agreement of the two meth-
ods lies in the fact that coupling takes place in the area where the distribution function is close to equilibrium
(locally, Kn� 1), and the difference between the VDFs (27) and (35) is small. We have observed that the
expansion of the continuum domain could result in negative values of the distribution function and incorrect
computation of the flow field. Generally, the choice of distribution function at the interface should be consis-
tent with the continuum breakdown criteria, and vice versa.
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4.2. Effect of breakdown parameter

We have studied the influence of the breakdown parameter on the flow characteristics calculated by the
UFS. Fig. 10 shows the gas pressure and the heat flux distributions over the cylinder surface calculated with
different breakdown parameters, S, for supersonic gas flow around a cylinder at M = 2, Kn1 = 0.1 and
Tw = 2.28. One can see that all curves converge at small S numbers when the Boltzmann region grows. At
the same time, by decreasing the S value, the computation time increases. Therefore, for quick results one
can use large values of S, if precision of the order of 10% is satisfactory.

5. UFS demonstration

In this section we demonstrate the UFS capabilities for simulation of external and internal flows for differ-
ent Knudsen and Mach numbers.
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5.1. External flows

The flow of single-component monatomic gas around a cylinder at M = 3 was studied in a wide range of
Kn1 numbers (0.001–10) with different criteria of domain decomposition. The boundary condition on the
surface of the cylinder corresponds to the diffuse reflection with the temperature of the wall Tw = 4. Fig. 11
shows the results of computations with the Boltzmann and Euler solvers. The continuum breakdown criterion
(34) is used with the value of the breakdown parameter equal to 0.3. The mesh refinement criterion is
b = log(q) + log(u).

The distributions of pressure, shear stress and the heat flux over the surface of cylinder for M = 2,
Kn1 = 0.1 and Tw = 2.28 are shown in Fig. 12 for different levels of mesh refinement near the surface. The
Fig. 11. Gas flow around a cylinder for M = 3, for different Kn numbers (Kn1 = k1/R = 5, 1.5, 0.5, 0.05, 0.005). On the left side are the
density profiles, on the right side are the computational grid with kinetic (dark) and continuum (white) domains.
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refinement level of 7 corresponds to the cell size of the order of k. One can see that the shear force is a relatively
smooth function of angle around the cylinder. Although not directly compared here, the shear force appears to
be smoother than what is expected from a conventional NS formulation [59,60]. The heat flux is also a rela-
tively smooth function; it becomes smoother as the refinement level increases. As noted in [59–61], the non-
smoothness and non-orthogonality at mesh refinement and cut-cell boundaries of hierarchically-based, adap-
tively refined grids can introduce non-positive discrete representations when applied to solving the NS equa-
tions. This is due to representation of the viscous fluxes by higher order derivatives of the cell-centered data in
a non-positive fashion, which for low cell Reynolds and Peclet numbers, can cause at best, non-smooth solu-
tions and at worst, instabilities that may not be damped by the temporal scheme [59]. The approach presented
here might overcome this deficiency, although more investigations are in order.

We have verified that increasing the mesh resolution around solid bodies does not lead to an increase in the
noise. This result is also encouraging since, typically, NS results become noisier when increasing the spatial
grid resolution near the surface.

Fig. 13 compares the calculated drag coefficient with experimental data [62] for M = 1.96 and M = 4. It is
seen that the UFS simulations agree well with the experimental data.

5.2. Simulations of internal flows

The UFS has been tested for simulations of internal flows in channels and nozzles. Fig. 15 shows examples
of 2D simulations of a short channel and a nozzle for two different Kn numbers. For the channel simulations,
the geometry and flow conditions correspond to Ref. [63]. The BTE-NS option of the UFS solver with second
order spatial discretization scheme was used in these simulations. The boundary conditions on the left bound-
ary are qin = pin = 1.5, the boundary condition on the right boundary is pout = 0.5. For the nozzle simulations,
the geometry and flow conditions correspond to Ref. [64]. The BTE-Euler option of the UFS with the first
order numerical scheme was used, the grid adaptation is based on b = log(q) + log(u). One can see in
Fig. 14 that significant continuum regions exist at low Knudsen numbers which can be simulated by the
NS solver.

5.3. 3D simulations

The parallel version of the UFS has been developed with the possibility of dynamic domain decomposition
and dynamic load balancing between different processors. The procedure of domain decomposition was per-
formed using space-filling curves (SFC). During sequential traversing of the cells by natural order, the physical
space is filled with curves in N-order (Morton ordering). After this ordering of cells, all cells can be considered
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Fig. 13. Drag coefficient versus Kn number. Comparison of UFS simulations with experiment. Solid lines indicate the free molecular flow
and continuum limits.



Fig. 14. Kinetic (dark) and continuum (white) domains for a 2D micro channel (top) for Kn = 0.01 (left) and Kn = 0.1 (right) and a nozzle
(bottom) for Kn = 0.05 (left) and Kn = 0.005 (right).

Fig. 15. Streamlines, Mach number and computational mesh (on the left). Gas temperature in the vertical plane, kinetic (brown) and
continuum (white) domains in the horizontal plane (on the right). (For interpretation of the references in colour in this figure legend, the
reader is referred to the web version of this article.)
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as a one-dimensional array. A weight is assigned to each cell, which is proportional to the CPU time required
to perform computations in this cell. Furthermore, the array modified with corresponding weights is subdi-
vided into sub-arrays equal to the number of processors, in such a way that the weights of the sub-arrays
are approximately the same. It was demonstrated that this method allows rather efficient domain decompo-
sition between different processors.

An example of 3D simulations on a 7-processor Linux cluster is shown in Fig. 15 for the Inflatable Reentry
Vehicle Experiment (IRVE). The flow conditions correspond to 91 km altitude (Kn1 = 0.01 and M = 3.94), at
zero angle of attack [65]. Fig. 15 shows streamlines, Mach number and computational mesh (on the left), the
gas temperature T (normalized on T1) in the vertical plane, as well as kinetic (red) and continuum (blue)
domains in the horizontal plane (on the right). The flow recirculation is observed in the kinetic domain behind
the body. The streamlines are not closed due to 3D effects.

6. Summary and outlook

We have developed a Unified Flow Solver with adaptive mesh and algorithm refinement based on the direct
numerical solution of the Boltzmann equation coupled to a kinetic CFD model. Our strategy allows easy cou-
pling of the Boltzmann and CFD solvers in a hybrid code with automatic domain decomposition. We have
demonstrated the UFS capabilities for several one-component gas flows and have confirmed that the hybrid
method results in significant savings by limiting expensive kinetic solutions only to the regions where they are
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needed. We have demonstrated that the UFS can automatically introduce or remove kinetic patches to max-
imize accuracy and efficiency of simulations. Future work will focus on UFS extensions to reactive gas mix-
tures, aiming to produce an efficient tool for solving practical problems of molecular gas flows with various
degree of rarefaction.
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